Un sistema de cámaras captura imágenes de los trabajadores y se deducen las principales emociones que están sufriendo los empleados. / freeGraphicToday (PIXABAY)
Fecha

Reconocimiento motivacional para la industria del futuro

Investigadores de la <a href="https://www.upm.es/" title="Universidad Politécnica de Madrid" alt="Universidad Politécnica de Madrid" target="_blank">Universidad Politécnica de Madrid</a> (UPM) han desarrollado un sistema para el reconocimiento de la motivación de los trabajadores en la industria del futuro, la Industria 4.0.

Maslow 4.0 es una solución tecnológica creada por el grupo de investigación de Ingeniería de Redes y Servicios Avanzados de Telecomunicación de la Universidad Politécnica de Madrid que ofrece información en tiempo real sobre la motivación humana. El sistema, del que se ha desarrollado ya un primer prototipo, está basado en la pirámide de Maslow y obtiene señales fisiológicas mediante un sensor de electrocardiograma que combina con señales emocionales provenientes de un sistema de rastreo de emociones basado en procesado de imágenes. Los resultados obtenidos, publicados en la revista Journal of Ambient Intelligence and Humanized Computing pueden ayudar a las empresas a mejorar su eficiencia y, al mismo tiempo, la satisfacción de sus trabajadores.

Modelo extendido de la jerarquía de las necesidades de Maslow.

El psicólogo Abraham Maslow propuso en 1943 y 1970 una jerarquía para las necesidades humanas, conocida hoy día como "pirámide de Maslow". Maslow proponía que solo cuando las necesidades de más bajo nivel -como por ejemplo alimentarse- estaban satisfechas totalmente podían satisfacerse necesidades de orden superior como la amistad. En esta jerarquía las necesidades de creatividad o autosuperación (básicas en el mundo laboral actual y, sobre todo, futuro) se encuentran en los niveles más altos. Por ello, es muy importante que los entornos de trabajo permitan satisfacer las necesidades de más bajo nivel a fin de lograr que los trabajadores sean productivos y exploten al máximo su potencial.

Hasta ahora, para conocer en qué medida una empresa conseguía este objetivo, debían realizarse diferentes encuestas a los trabajadores, lo que resulta un proceso costoso en tiempo y dinero. Además, no permite una reacción rápida y en tiempo real si se produce una caída de la motivación por un suceso espontáneo ya que las encuestas suelen estar diseñadas para detectar situaciones de largo recorrido.

Para permitir un análisis de la motivación mucho más efectivo, un equipo de investigadores de la Universidad Politécnica de Madrid ha propuesto un nuevo sistema: Maslow 4.0. Este sistema consta de un sensor de electrocardiograma integrado en un dispositivo personal, un sistema de captura de imágenes, una aplicación de procesamiento de señal, un sistema de reconocimiento de emociones mediante procesado de imágenes y un servidor remoto donde se compone toda la información recogida y se ejecuta el servicio.

El sistema captura información fisiológica de los trabajadores que permite inferir el estado de satisfacción de sus necesidades de más bajo nivel (alimentación, estrés, etc.). Estos datos se procesan en una aplicación específica y se envían a un servidor remoto. Por otro lado, un sistema de cámaras captura imágenes de los trabajadores y, mediante procesamiento de señal, se deducen las principales emociones que están sufriendo los empleados. Estos resultados, que nos permiten inferir el grado de satisfacción de las necesidades de más alto nivel, se envían también al servidor remoto donde, mediante un modelo y algoritmo matemáticos, se componen ambas informaciones y se obtiene un mapa motivacional de los trabajadores.

Para obtener las señales emocionales, la salida del sistema de video está conectada a una página web estática que incluye Affectiva JS-SDK. Luego, cada imagen se procesa utilizando el algoritmo de reconocimiento de emociones y se obtienen varias señales emocionales como respuesta.

Como señala Borja Bordel, uno de los investigadores que ha llevado a cabo este trabajo "el sistema supone una mejora con respecto a las soluciones tradicionales. La tecnología propuesta ofrece información continua y en tiempo real sobre la motivación de los trabajadores. Las situaciones de desmotivación pueden localizarse y abordarse de una manera extremadamente precisa y rápida, lo que puede ayudar a las empresas a mejorar tanto su eficiencia como la satisfacción de sus empleados".

La investigación que ha dado lugar a estos resultados ha recibido fondos del Ministerio de Economía y Competitividad a través del proyecto SEMOLA (TEC2015-68284-R).


Referencia bibliográfica:

Borja Bordel, Ramón Alcarria. Assessment of human motivation through analysis of physiological and emotional signals in Industry 4.0 scenarios. Journal of Ambient Intelligence and Humanized Computing pp. 1-21. Diciembre 2017.

Añadir nuevo comentario

El contenido de este campo se mantiene privado y no se mostrará públicamente.
Para el envío de comentarios, Ud. deberá rellenar todos los campos solicitados. Así mismo, le informamos que su nombre aparecerá publicado junto con su comentario, por lo que en caso que no quiera que se publique, le sugerimos introduzca un alias.

Normas de uso:

  • Las opiniones vertidas serán responsabilidad de su autor y en ningún caso de www.madrimasd.org,
  • No se admitirán comentarios contrarios a las leyes españolas o buen uso.
  • El administrador podrá eliminar comentarios no apropiados, intentando respetar siempre el derecho a la libertad de expresión.
CAPTCHA
Enter the characters shown in the image.
Esta pregunta es para probar si usted es un visitante humano o no y para evitar envíos automáticos de spam.