Fecha

Los posibles caminos a trazar en un terreno singular

Proponen una forma alternativa de calcular el orden de Hironaka, un invariante dentro del problema de resolución de singularidades, central en geometría algebraica

En matemáticas, cuando hablamos de una variedad, nos referimos al conjunto de soluciones de un sistema de ecuaciones polinomiales. En geometría algebraica se consideran estas soluciones como un conjunto de puntos en el espacio que dan lugar a un objeto geométrico (por ejemplo, una superficie o una curva en el espacio).

Los puntos singulares (o singularidades) son aquellos en los que todo se complica. En una variedad no singular se pueden dar coordenadas con un buen comportamiento: se pueden asociar valores a cada punto de la variedad, de tal modo que pequeñas variaciones de las coordenadas dan lugar a pequeñas variaciones de los valores asociados. En los puntos singulares no se pueden usar coordenadas y los valores asociados pueden dar grandes saltos.

La resolución de singularidades pretende aproximar una variedad con singularidades mediante una variedad sin ellas. En el estudio algorítmico de este problema, se utilizan invariantes asociados a los puntos singulares, que son indicadores del nivel de dificultad que estos suponen. El invariante más importante es el llamado orden de Hironaka.

En un trabajo reciente, matemáticos de la Universidad Autónoma de Madrid (UAM) han demostrado que este invariante se puede encontrar estudiando arcos suficientemente genéricos de la variedad.

El problema de las singularidades

Las singularidades, y el problema de su resolución, llevan siendo objeto de estudio más de cien años. Su interés reside principalmente en el obstáculo que la presencia de estas supone para la demostración de resultados matemáticos, incluso cuando estos son conocidos en su ausencia.

Actualmente no se sabe si para cualquier variedad en un contexto general siempre es posible encontrar una resolución, aunque para variedades definidas sobre cuerpos con característica cero (por ejemplo, sobre los números complejos) la respuesta afirmativa le valió la medalla Fields a H. Hironaka en 1970.

Resolución de una curva cuspidal / GeoGebra - UAM

Más adelante, J. Nash (Nobel de Economía en 1994 y Premio Abel en 2015) sugirió los arcos como fuente de información: Comprender aspectos del proceso de resolución de singularidades de aquellas variedades para las que se conoce que existe, podría ayudar a vislumbrar cómo sería el proceso, en caso de existir, para las que se desconoce. Varios investigadores han trabajado en distintas versiones de esta idea en de los últimos años.

“Nuestro uso de los arcos se centra en comprender la versión algorítmica de la resolución”, afirman los investigadores.

“Los arcos de una variedad centrados en un punto P son, de algún modo, la ampliación bajo una lupa exhaustiva de cada uno de los posibles caminos que se pueden trazar en la variedad pasando por P. El conjunto de posibles comportamientos de estos (infinitos) caminos cerca de P proporciona información sobre cómo de singular es P”, explican.

La aportación de este trabajo consiste en estimar el orden de Hironaka, utilizando la información que proporcionan los arcos: “demostramos que basta mirar algunos de los arcos de la variedad que están centrados en un punto P para estimar el orden de Hironaka asociado a P”.

“Otro de nuestros resultados —agregan los investigadores— viene a decir que el orden de Hironaka también se puede leer estudiando los conjuntos de contacto: el conjunto de todos los arcos centrados en un punto singular P puede dividirse en estratos, de manera acorde a cómo de estrecho es el contacto de cada arco con P. Es decir, podremos distinguir unos arcos de otros en función de cómo de complicados se vuelvan los caminos al acercarse a P. Estos estratos conforman los distintos conjuntos de contacto de los arcos con la variedad en P.”

Según el trabajo, publicado en Manuscripta Mathematica, la utilidad principal de este resultado no es tanto calcular el orden de Hironaka explícitamente, ya que en muchos casos puede ser igual de difícil en la práctica que con otros métodos más tradicionales, sino la certeza de que este está relacionado con los arcos de la forma concreta descrita en el artículo.

“Lo interesante de esta relación es que nos abre una nueva puerta a entender particularidades del proceso de resolución que aún no comprendemos”, concluyen los autores.

Para llegar a este resultado, que conecta distintos aspectos del estudio de la resolución de singularidades en los que han trabajado distintos investigadores en los últimos años, los autores utilizaron herramientas de álgebra conmutativa y geometría algebraica.


Referencia bibliográfica:

Bravo, A., Encinas, S., Pascual-Escudero, B. 2020. Contact loci and Hironaka’s order. manuscripta mathematica, https://doi.org/10.1007/s00229-020-01235-w

Añadir nuevo comentario

El contenido de este campo se mantiene privado y no se mostrará públicamente.
Para el envío de comentarios, Ud. deberá rellenar todos los campos solicitados. Así mismo, le informamos que su nombre aparecerá publicado junto con su comentario, por lo que en caso que no quiera que se publique, le sugerimos introduzca un alias.

Normas de uso:

  • Las opiniones vertidas serán responsabilidad de su autor y en ningún caso de www.madrimasd.org,
  • No se admitirán comentarios contrarios a las leyes españolas o buen uso.
  • El administrador podrá eliminar comentarios no apropiados, intentando respetar siempre el derecho a la libertad de expresión.
CAPTCHA
Enter the characters shown in the image.
Esta pregunta es para probar si usted es un visitante humano o no y para evitar envíos automáticos de spam.