Add new comment

Para el envío de comentarios, Ud. deberá rellenar todos los campos solicitados. Así mismo, le informamos que su nombre aparecerá publicado junto con su comentario, por lo que en caso que no quiera que se publique, le sugerimos introduzca un alias.

Normas de uso:

  • Las opiniones vertidas serán responsabilidad de su autor y en ningún caso de www.madrimasd.org,
  • No se admitirán comentarios contrarios a las leyes españolas o buen uso.
  • El administrador podrá eliminar comentarios no apropiados, intentando respetar siempre el derecho a la libertad de expresión.
CAPTCHA
Enter the characters shown in the image.
Esta pregunta es para probar si usted es un visitante humano o no y para evitar envíos automáticos de spam.

Descripción

En este módulo se han reunido una serie de técnicas procedentes de distintos campos como el análisis multivariante, el aprendizaje estadístico, la inteligencia artificial y técnicas de machine learning. La mayoría de las técnicas presentadas son técnicas predictivas, cuyo objetivo principal es desarrollar un modelo matemático que permita obtener predicciones en una variable de interés en observaciones no incluidas en la construcción del modelo. Se han seleccionado las técnicas predictivas más importantes y cuyo uso está más extendido: regresión lineal y logística, métodos penalizados (LASSO), métodos basados en árboles (CART), support vector machines (SVM), redes neuronales, random forest.

El módulo incluye los aspectos más importantes para la construcción de modelos predictivos: pre-procesamiento y descripción básica de los datos, optimización de los parámetros involucrados en cada una de las técnicas, evaluación de la capacidad predictiva de los modelos mediante técnicas de remuestreo (validación cruzada y bootstrapping), selección de variables que van a formar parte del modelo, comportamiento de cada técnica en problemas de alta dimensión, etc.