Bluetongue virus. / AJC1 (FLICKR)
Fecha

La flexibilidad mecánica de los virus puede favorecer su ensamblaje espontáneo

Investigadores de la <a href="http://www.uam.es/UAM/Home.htm?language=es" target="_blank" title="Universidad Autónoma de Madrid">Universidad Autónoma de Madrid</a> (UAM) y el <a href="https://www.cbm.uam.es/en/joomla-rl/index.php/es" target="_blank" title="Centro de Biología Molecular Severo Ochoa">Centro de Biología Molecular Severo Ochoa</a> (CBMSO) han descrito la cadena de montaje espontáneo de un virus, detallando el papel que juega la flexibilidad mecánica del virus en este proceso.

Un grupo de investigación de la Universidad Autónoma de Madrid (UAM) y del Centro de Biología Molecular Severo Ochoa (CBMSO), dirigido por Mauricio G. Mateu, ha publicado recientemente dos trabajos en los campos de la biofísica y las nanociencias que aportan nuevos conocimientos sobre las conexiones entre las propiedades mecánicas y el funcionamiento biológico de los virus. 

En el primer trabajo, publicado en the Journal of the American Chemical Society, la investigadora predoctoral María Medrano utilizó, con ayuda de otros miembros del grupo, técnicas de microscopía de fuerzas atómicas y microscopía electrónica para observar la manera como las piezas de la cápsida de un virus diminuto de ratón (MVM) se van uniendo espontáneamente entre sí.

En el segundo trabajo, publicado en ACS Nano, el doctor Pablo J. Pérez Carrillo y otros miembros del mismo grupo utilizaron técnicas de ingeniería de proteínas para realizar individualmente muchas pequeñas modificaciones en las piezas que se autoensamblan para formar el virus MVM, alterando las interacciones que se establecen entre ellas.

“Los resultados de estos trabajos sugieren que la cápsida de MVM ha evolucionado hacia la minimización de su rigidez mecánica. Para ello, ha adaptado la estructura fina de sus piezas y las interacciones que estas establecen. Esta mínima rigidez mecánica, o máxima flexibilidad, parece contribuir a una mayor eficacia en el ensamblaje espontáneo de estas piezas para formar la cápsida completa del virus”, afirma Mateu, que es profesor del departamento de Biología Molecular de la UAM.     

De acuerdo con los autores, estos resultados favorecen el diseño de fármacos antivirales que inhiban el autoensamblaje de virus, o que degraden las propiedades mecánicas que ayudan a su supervivencia. También, estos resultados podrían contribuir al diseño de nanopartículas y nanomateriales capaces de autoensamblarse eficazmente, y con propiedades mecánicas adecuadas para aplicaciones que van desde la nanomedicina a la nanoelectrónica.

NANOMÁQUINAS MOLECULARES

Para construir una máquina (un automóvil en una cadena de montaje, por ejemplo) además de las piezas que van a ser ensambladas se requieren otros elementos, como otras máquinas, energía, operarios e instrucciones. Los virus son máquinas naturales diminutas –nanomáquinas moleculares–, pero a diferencia de nuestras máquinas, las piezas que constituyen los virus más sencillos son capaces de ensamblarse espontáneamente, sin ayuda externa. Para ello siguen instrucciones originalmente contenidas en su material genético, e implementadas en las propias estructuras de sus "piezas" (moléculas de proteínas y ácido nucleico vírico) que se autoensamblan a favor del gradiente de energía.

Siguiendo con el símil del automóvil, el ingeniero diseña la carrocería monocasco de manera que tenga algunas partes más rígidas y otras más flexibles, de modo que el automóvil mantenga su integridad durante la circulación en condiciones de fuerte estrés mecánico pero que, en caso de colisión, se deforme del modo más adecuado para minimizar daños a los ocupantes.

Como muestran las recientes investigaciones del grupo que dirige Mauricio G. Mateu, las piezas que forman los virus y la manera en que se autoensamblan han sido "adaptadas" por la selección natural, de modo que confieren el adecuado grado de rigidez mecánica a algunas partes del virus, y de flexibilidad a otras partes. De este modo, el virus puede resistir el estrés físico o químico sin dejar de funcionar adecuadamente.


Referencias bibliográficas:

Medrano M., Fuertes, M.A., Valbuena, A., Carrillo, P.J.P., Rodríguez-Huete, A., and Mateu, M.G. (2016). Imaging and quantitation of a succession of transient intermediates reveal the reversible self-assembly pathway of a simple icosahedral virus capsid. J. Am. Chem. Soc., Doi: 10.1021/jacs.6b07663<

Carrillo, P.J.P., Medrano, M., Valbuena, A., Rodríguez-Huete, A., Castellanos, M., Pérez, R., and Mateu M.G. (2017). Amino acid side chains buried along intersubunit interfaces in a viral capsid preserve low mechanical stiffness associated to virus infectivity. ACS Nano, Doi: 10.1021/acsnano.6b08549

Añadir nuevo comentario

El contenido de este campo se mantiene privado y no se mostrará públicamente.
Para el envío de comentarios, Ud. deberá rellenar todos los campos solicitados. Así mismo, le informamos que su nombre aparecerá publicado junto con su comentario, por lo que en caso que no quiera que se publique, le sugerimos introduzca un alias.

Normas de uso:

  • Las opiniones vertidas serán responsabilidad de su autor y en ningún caso de www.madrimasd.org,
  • No se admitirán comentarios contrarios a las leyes españolas o buen uso.
  • El administrador podrá eliminar comentarios no apropiados, intentando respetar siempre el derecho a la libertad de expresión.
CAPTCHA
Enter the characters shown in the image.
Esta pregunta es para probar si usted es un visitante humano o no y para evitar envíos automáticos de spam.